
2020/04/01 16:02 1/16 Focus Manuals: Programing Guide: Structures in BIEF

open TELEMAC-MASCARET - http://wiki.opentelemac.org/

 Focus Manuals: Programing Guide: Structures in BIEF

links from Programing Guide

 A short description

In BIEF 6.0, structures will be composed of integer and real numbers, of pointers to other structures or
to integer and real arrays. The structures defined in this way are, for the time being, as follows:

BIEF_OBJ (may be a vector, a matrix or a block)●

BIEF_MESH (information on a mesh)●

SLVCFG (Solver Configuration)●

BIEF_FILE (Description of a data file)●

The notions of VECTOR, MATRIX and BLOCK that were pre-programmed in BIEF 6.+ have been
gathered in a single structure called BIEF_OBJ. This will enable what is called “polymorphism” in
Object Oriented Languages, i.e. the fact that arguments of subroutines may be of different types. As a
matter of fact, many subroutines in BIEF are able to treat in the same way vectors or blocks of vectors
(see for example OS), matrices or blocks of matrices (see e.g. SOLVE and DIRICH). Polymorphism is
possible in Fortran 90 with the use of interfaces, however it requires the writing of one subroutine per
combination of types, and thus leads to a lot of duplication. The use of a single structure BIEF_OBJ
was thus more elegant, the only drawback being that the misuse of a matrix as a vector, for example,
cannot be checked by the compiler but only by the subroutines dealing with such structures.

Information on the structures can be simply retrieved by the component selector. We shall also refer
to BIEF_OBJ structures as VECTOR, MATRIX or BLOCK, depending on their use, as is done below.

 VECTOR

This may be any vector (a simple array) or a vector defined on the mesh, with values for every point
of the mesh. In the latter case, there is a corresponding discretisation type and numbering system
(global or boundary numbering of nodes or numbering of elements). For example, a vector defined on
all the mesh with a discretisation P0 will be implicitly given according to the element numbers. In
certain conditions, a vector may change discretisation while the calculations are being carried out.

A vector has a first dimension which corresponds to the number of nodes to which it applies. There is
also a second dimension (for example, the off-diagonal terms of a matrix).

Any vector is in fact an array with 2 dimensions which the user can process as he wishes.

 MATRIX

Matrices are also linked to the mesh. Different storage methods are possible. These matrices can be
multiplied by the vectors mentioned above.

 BLOCK

A block is a set of structures. This notion has proved of particular importance for:

Writing general solvers for linear systems, with the possibility of the matrix being a block of several●

matrices.
Using simple orders to group together and process sets of vectors or matrices, for example the●

arrays of variables which are advected by the method of characteristics.

http://wiki.opentelemac.org/doku.php?id=programing_guide

Last update: 2014/10/10
16:01 programing_guide:structures_in_bief http://wiki.opentelemac.org/doku.php?id=programing_guide:structures_in_bief

http://wiki.opentelemac.org/ Printed on 2020/04/01 16:02

Eliminate the need for certain arrays to follow one another in the memory.●

 BIEF_MESH structure

This structure includes all information concerning the mesh (connectivity tables, boundary points,
point coordinates, etc.). It replaces a large number of arrays used in releases of BIEF prior to 3.2

 SLVCFG

It stands for “SoLVer ConFiGuration). This is a simple structure to store all the information needed by
the subroutine SOLVE for solving linear systems (choice of the method, accuracy, preconditioning,
etc).

 Reference description of the structures

Module BIEF_DEF of the library is given hereafter, with the list of components for every structure and
a short description.

++++ POINTER TO BIEF OBJ

 !
 !===
 !
 ! STRUCTURE OF POINTER TO A BIEF_OBJ, TO HAVE ARRAYS OF POINTERS
 ! IN THE BIEF_OBJ STRUCTURE FOR BLOCKS
 !
 ! BIEF VERSION 6.0
 !
 !===
 !
 ! THIS IS NECESSARY IN FORTRAN 90 TO HAVE ARRAYS OF POINTERS
 ! LIKE THE COMPONENT ADR BELOW, WHICH ENABLES TO BUILD BLOCKS
 ! WHICH ARE ARRAYS OF POINTERS TO BIEF_OBJ STRUCTURES
 !
 TYPE POINTER_TO_BIEF_OBJ
 SEQUENCE
 TYPE(BIEF_OBJ), POINTER :: P
 END TYPE POINTER_TO_BIEF_OBJ
 !

++++

BIEF_OBJ

 TYPE BIEF_OBJ
 !

!---

 !
 ! HEADER COMMON TO ALL OBJECTS

2020/04/01 16:02 3/16 Focus Manuals: Programing Guide: Structures in BIEF

open TELEMAC-MASCARET - http://wiki.opentelemac.org/

 !
 ! KEY : ALWAYS 123456 TO CHECK MEMORY OVERWRITING
 INTEGER KEY
 !
 ! TYPE: 2: VECTOR, 3: MATRIX, 4: BLOCK

 INTEGER TYPE
 !
 ! NAME: FORTRAN NAME OF OBJECT IN 6 CHARACTERS
 CHARACTER(LEN=6) NAME
 !

!---

 !
 ! FOR VECTORS
 !
 !
 ! NAT: NATURE (1:DOUBLE PRECISION 2:INTEGER)
 INTEGER NAT
 !
 ! ELM: TYPE OF ELEMENT
 INTEGER ELM
 !
 ! DIM1: FIRST DIMENSION OF VECTOR
 INTEGER DIM1
 !
 ! MAXDIM1: MAXIMUM SIZE PER DIMENSION
 INTEGER MAXDIM1
 !
 ! DIM2: SECOND DIMENSION OF VECTOR
 INTEGER DIM2
 !
 ! MAXDIM2: MAXIMUM SECOND DIMENSION OF VECTOR
 INTEGER MAXDIM2
 !
 ! DIMDISC: TYPE OF ELEMENT IF VECTOR IS DISCONTINUOUS AT
 ! THE BORDER BETWEEN ELEMENTS, OR 0 IF NOT
 INTEGER DIMDISC
 !
 ! STATUS:
 ! 0: ANY ARRAY
 ! 1: VECTOR DEFINED ON A MESH, NO CHANGE OF DISCRETISATION
 ! 2: VECTOR DEFINED ON A MESH, CHANGE OF DISCRETISATION ALLOWED
 INTEGER STATUS
 !
 ! TYPR: TYPE OF VECTOR OF REALS
 ! '0' : NIL '1' : EQUAL TO 1 'Q' : NO SPECIFIC PROPERTY
 CHARACTER*1 TYPR
 !
 ! TYPR: TYPE OF VECTOR OF REALS

Last update: 2014/10/10
16:01 programing_guide:structures_in_bief http://wiki.opentelemac.org/doku.php?id=programing_guide:structures_in_bief

http://wiki.opentelemac.org/ Printed on 2020/04/01 16:02

 ! '0' : NIL '1' : EQUAL TO 1 'Q' : NO SPECIFIC PROPERTY
 CHARACTER*1 TYPI
 !
 ! POINTER TO DOUBLE PRECISION 1-DIMENSION ARRAY
 ! DATA ARE STORED HERE FOR A DOUBLE PRECISION VECTOR
 DOUBLE PRECISION, POINTER,DIMENSION(:)::R
 !
 ! POINTER TO INTEGER 1-DIMENSION ARRAY
 ! DATA ARE STORED HERE FOR AN INTEGER VECTOR
 INTEGER, POINTER,DIMENSION(:)::I
 !

!---

 !
 ! FOR MATRICES
 !
 ! STO: TYPE OF STORAGE 1: CLASSICAL EBE 3: EDGE-BASED STORAGE
 INTEGER STO
 !
 ! ELMLIN: TYPE OF ELEMENT OF LINE
 INTEGER ELMLIN
 !
 ! ELMCOL: TYPE OF ELEMENT OF COLON
 INTEGER ELMCOL
 !
 ! TYPDIA: TYPE OF DIAGONAL
 ! '0' : NIL 'I' : IDENTITY 'Q' : NO SPECIFIC PROPERTY

 CHARACTER*1 TYPDIA
 !
 ! TYPEXT: TYPE OF EXTRA-DIAGONAL TERMS
 ! '0' : NIL 'S' : SYMMETRY 'Q' : NO SPECIFIC PROPERTY
 CHARACTER*1 TYPEXT
 !
 ! POINTER TO A BIEF_OBJ FOR DIAGONAL
 TYPE(BIEF_OBJ), POINTER :: D
 !
 ! POINTER TO A BIEF_OBJ FOR EXTRA-DIAGONAL TERMS
 TYPE(BIEF_OBJ), POINTER :: X
 !
 ! PRO: TYPE OF MATRIX-VECTOR PRODUCT
 INTEGER PRO
 !

!---

 !
 ! FOR BLOCKS
 !

2020/04/01 16:02 5/16 Focus Manuals: Programing Guide: Structures in BIEF

open TELEMAC-MASCARET - http://wiki.opentelemac.org/

 ! BLOCKS ARE IN FACT ARRAYS OF POINTERS TO BIEF_OBJ STRUCTURES
 ! ADR(I)%P WILL BE THE I-TH BIEF_OBJ OBJECT
 !
 ! N: NUMBER OF OBJECTS IN THE BLOCK
 INTEGER N
 ! MAXBLOCK: MAXIMUM NUMBER OF OBJECTS IN THE BLOCK
 INTEGER MAXBLOCK
 ! ADR: ARRAY OF POINTERS TO OBJECTS (WILL BE OF SIZE MAXBLOCK)
 TYPE(POINTER_TO_BIEF_OBJ), POINTER, DIMENSION(:) :: ADR
 !

!---

 !
 END TYPE BIEF_OBJ
 !
 !

!===
======
 !

BIEF_MESH

 !

!===
======
 !
 ! STRUCTURE OF MESH : BIEF_MESH
 !

!===
======
 !
 TYPE BIEF_MESH
 !
 ! 1) A HEADER
 !
 ! NAME: NAME OF MESH IN 6 CHARACTERS
 CHARACTER(LEN=6) NAME
 !
 ! 2) A SERIES OF INTEGER VALUES (DECLARED AS POINTERS TO ENABLE
 ! ALIASES)
 !
 ! NELEM: NUMBER OF ELEMENTS IN MESH
 INTEGER, POINTER :: NELEM
 !
 ! NELMAX: MAXIMUM NUMBER OF ELEMENTS ENVISAGED
 INTEGER, POINTER :: NELMAX

Last update: 2014/10/10
16:01 programing_guide:structures_in_bief http://wiki.opentelemac.org/doku.php?id=programing_guide:structures_in_bief

http://wiki.opentelemac.org/ Printed on 2020/04/01 16:02

 !
 ! NPTFR: NUMBER OF 1D BOUNDARY NODES, EVEN IN 3D
 INTEGER, POINTER :: NPTFR
 !
 ! NPTFRX: NUMBER OF 1D BOUNDARY NODES, EVEN IN 3D
 INTEGER, POINTER :: NPTFRX
 !
 ! NELEB: NUMBER OF BOUNDARY ELEMENTS (SEGMENTS IN 2D)
 ! IN 3D WITH PRISMS:
 ! number of LATERAL boundary elements for sigma mesh
 INTEGER, POINTER :: NELEB
 !
 ! NELEBX: MAXIMUM NELEB
 INTEGER, POINTER :: NELEBX
 !
 ! NSEG: NUMBER OF SEGMENTS IN THE MESH
 INTEGER, POINTER :: NSEG
 !
 ! DIM: DIMENSION OF DOMAIN (2 OR 3)
 INTEGER, POINTER :: DIM
 !
 ! TYPELM: TYPE OF ELEMENT (10 FOR TRIANGLES, 40 FOR PRISMS)
 INTEGER, POINTER :: TYPELM
 !
 ! NPOIN: NUMBER OF VERTICES (OR LINEAR NODES) IN THE MESH
 INTEGER, POINTER :: NPOIN
 !
 ! NPMAX: MAXIMUM NUMBER OF VERTICES IN THE MESH
 INTEGER, POINTER :: NPMAX
 !
 ! MXPTVS: MAXIMUM NUMBER OF POINTS ADJACENT TO 1 POINT
 INTEGER, POINTER :: MXPTVS
 !
 ! MXELVS: MAXIMUM NUMBER OF ELEMENTS ADJACENT TO 1 POINT
 INTEGER, POINTER :: MXELVS
 !
 ! LV: MAXIMUM VECTOR LENGTH ALLOWED ON VECTOR COMPUTERS,
 ! DUE TO ELEMENT NUMBERING
 INTEGER, POINTER :: LV
 !
 !
 ! 3) A SERIES OF BIEF_OBJ FOR STORING INTEGER ARRAYS
 !
 ! IKLE: CONNECTIVITY TABLE IKLE(NELMAX,NDP) AND KLEI(NDP,NELMAX)
 TYPE(BIEF_OBJ), POINTER :: IKLE,KLEI
 !
 ! IFABOR: TABLE GIVING ELEMENTS BEHIND FACES OF A TRIANGLE
 TYPE(BIEF_OBJ), POINTER :: IFABOR
 !
 ! NELBOR: ELEMENTS OF THE BORDER

2020/04/01 16:02 7/16 Focus Manuals: Programing Guide: Structures in BIEF

open TELEMAC-MASCARET - http://wiki.opentelemac.org/

 TYPE(BIEF_OBJ), POINTER :: NELBOR
 !
 ! NULONE: LOCAL NUMBER OF BOUNDARY POINTS FOR BORDER ELEMENTS
 TYPE(BIEF_OBJ), POINTER :: NULONE
 !
 ! KP1BOR: POINTS FOLLOWING AND PRECEDING A BOUNDARY POINT
 TYPE(BIEF_OBJ), POINTER :: KP1BOR
 !
 ! NBOR: GLOBAL NUMBER OF BOUNDARY POINTS
 TYPE(BIEF_OBJ), POINTER :: NBOR
 !
 ! IKLBOR: CONNECTIVITY TABLE FOR BOUNDARY POINTS
 TYPE(BIEF_OBJ), POINTER :: IKLBOR
 !
 ! IFANUM: FOR STORAGE 2, NUMBER OF SEGMENT IN ADJACENT ELEMENT
 ! OF A TRIANGLE
 TYPE(BIEF_OBJ), POINTER :: IFANUM
 !
 ! IKLEM1: ADRESSES OF NEIGHBOURS OF POINTS FOR FRONTAL
 ! MATRIX-VECTOR PRODUCT
 TYPE(BIEF_OBJ), POINTER :: IKLEM1
 !
 ! LIMVOI: FOR FRONTAL MATRIX-VECTOR PRODUCT. ADDRESSES OF POINTS
 ! WITH A GIVEN NUMBER OF NEIGHBOURS.
 TYPE(BIEF_OBJ), POINTER :: LIMVOI
 !
 ! NUBO: FOR FINITE VOLUMES, GLOBAL NUMBERS OF VERTICES OF
SEGMENTS
 TYPE(BIEF_OBJ), POINTER :: NUBO
 !
 ! FOR SEGMENT-BASED STORAGE

 !
 ! GLOSEG: GLOBAL NUMBERS OF VERTICES OF SEGMENTS
 TYPE(BIEF_OBJ), POINTER :: GLOSEG
 ! ELTSEG: SEGMENTS FORMING AN ELEMENT
 TYPE(BIEF_OBJ), POINTER :: ELTSEG
 ! ORISEG: ORIENTATION OF SEGMENTS FORMING AN ELEMENT 1:TRIGO
2:CLOCKWISE
 TYPE(BIEF_OBJ), POINTER :: ORISEG
 !
 !
 ! SERIES OF ARRAYS FOR PARALLELISM
 ! HERE GLOBAL MEANS NUMBER IN THE WHOLE DOMAIN
 ! LOCAL MEANS NUMBER IN THE SUB-DOMAIN
 !
 ! KNOLG: GIVES THE INITIAL GLOBAL NUMBER OF A LOCAL POINT
 TYPE(BIEF_OBJ), POINTER :: KNOLG
 ! NACHB: NUMBERS OF PROCESSORS CONTAINING A GIVEN POINT
 TYPE(BIEF_OBJ), POINTER :: NACHB
 ! ISEG: GLOBAL NUMBER OF FOLLOWING OR PRECEDING POINT IN THE

Last update: 2014/10/10
16:01 programing_guide:structures_in_bief http://wiki.opentelemac.org/doku.php?id=programing_guide:structures_in_bief

http://wiki.opentelemac.org/ Printed on 2020/04/01 16:02

BOUNDARY
 ! IF IT IS IN ANOTHER SUB-DOMAIN.
 TYPE(BIEF_OBJ), POINTER :: ISEG
 ! KNOGL: INVERSE OF KNOLG, KNOGL(KNOLG(I))=I. LOCAL NUMBER OF A
 ! POINT WITH GIVEN GLOBAL NUMBER
 TYPE(BIEF_OBJ), POINTER :: KNOGL
 ! ADDRESSES IN ARRAYS SENT BETWEEN PROCESSORS
 TYPE(BIEF_OBJ), POINTER :: INDPU
 !
 ! DIMENSION NHP(NBMAXNSHARE,NPTIR). NHP(IZH,IR) IS THE GLOBAL
NUMBER
 ! IN THE SUB-DOMAIN OF A POINT WHOSE NUMBER IS IR IN THE
INTERFACE
 ! WITH THE IZ-TH HIGHER RANK PROCESSOR
 TYPE(BIEF_OBJ), POINTER :: NHP
 ! NHM IS LIKE NHP, BUT WITH LOWER RANK PROCESSORS
 TYPE(BIEF_OBJ), POINTER :: NHM
 !
 ! FOR FINITE VOLUMES AND KINETIC SCHEMES
 TYPE(BIEF_OBJ), POINTER :: JMI
 ! ELEMENTAL HALO NEIGHBOURHOOD DESCRIPTION IN PARALLEL
 ! IFAPAR(6,NELEM2)
 ! IFAPAR(1:3,IELEM): PROCESSOR NUMBERS BEHIND THE 3 ELEMENT
EDGES
 ! NUMBER FROM 0 TO NCSIZE-1
 ! IFAPAR(4:6,IELEM): -LOCAL- ELEMENT NUMBERS BEHIND THE 3 EDGES
 ! IN THE NUMBERING OF PARTITIONS THEY BELONG TO
 TYPE(BIEF_OBJ), POINTER :: IFAPAR
 !
 ! 4) A SERIES OF BIEF_OBJ FOR STORING REAL ARRAYS
 !
 ! XEL: COORDONNEES X PAR ELEMENTS
 TYPE(BIEF_OBJ), POINTER :: XEL
 !
 ! YEL: COORDONNEES Y PAR ELEMENTS
 TYPE(BIEF_OBJ), POINTER :: YEL
 !
 ! ZEL: COORDONNEES Z PAR ELEMENTS
 TYPE(BIEF_OBJ), POINTER :: ZEL
 !
 ! SURFAC: AREAS OF ELEMENTS
 TYPE(BIEF_OBJ), POINTER :: SURFAC
 !
 ! SURDET: 1/DET OF ISOPARAMETRIC TRANSFORMATION
 TYPE(BIEF_OBJ), POINTER :: SURDET
 !
 ! LGSEG: LENGTH OF 2D BOUNDARY SEGMENTS
 TYPE(BIEF_OBJ), POINTER :: LGSEG
 !
 ! XSGBOR: NORMAL X TO 1D BOUNDARY SEGMENTS

2020/04/01 16:02 9/16 Focus Manuals: Programing Guide: Structures in BIEF

open TELEMAC-MASCARET - http://wiki.opentelemac.org/

 TYPE(BIEF_OBJ), POINTER :: XSGBOR
 !
 ! YSGBOR: NORMAL Y TO 1D BOUNDARY SEGMENTS
 TYPE(BIEF_OBJ), POINTER :: YSGBOR
 !
 ! ZSGBOR: NORMAL Z TO 1D BOUNDARY SEGMENTS
 TYPE(BIEF_OBJ), POINTER :: ZSGBOR
 !
 ! XNEBOR: NORMAL X TO 1D BOUNDARY POINTS
 TYPE(BIEF_OBJ), POINTER :: XNEBOR
 !
 ! YNEBOR: NORMAL Y TO 1D BOUNDARY POINTS
 TYPE(BIEF_OBJ), POINTER :: YNEBOR
 !
 ! ZNEBOR: NORMAL Z TO 1D BOUNDARY POINTS
 TYPE(BIEF_OBJ), POINTER :: ZNEBOR
 !
 ! X: COORDINATES OF POINTS
 TYPE(BIEF_OBJ), POINTER :: X
 !
 ! Y: COORDINATES OF POINTS
 TYPE(BIEF_OBJ), POINTER :: Y
 !
 ! Z: COORDINATES OF POINTS
 TYPE(BIEF_OBJ), POINTER :: Z
 !
 ! COSLAT: LATITUDE COSINE
 TYPE(BIEF_OBJ), POINTER :: COSLAT
 !
 ! SINLAT: LATITUDE SINE
 TYPE(BIEF_OBJ), POINTER :: SINLAT
 !
 ! DISBOR: DISTANCE TO 1D BOUNDARIES
 TYPE(BIEF_OBJ), POINTER :: DISBOR
 !
 ! M: WORKING MATRIX
 TYPE(BIEF_OBJ), POINTER :: M
 !
 ! MSEG: WORKING MATRIX FOR SEGMENT-BASED STORAGE
 TYPE(BIEF_OBJ), POINTER :: MSEG
 !
 ! W: WORKING ARRAY FOR A NON-ASSEMBLED VECTOR
 TYPE(BIEF_OBJ), POINTER :: W
 !
 ! T: WORKING ARRAY FOR AN ASSEMBLED VECTOR
 TYPE(BIEF_OBJ), POINTER :: T
 !
 ! VNOIN: FOR FINITE VOLUMES
 TYPE(BIEF_OBJ), POINTER :: VNOIN
 !
 ! XSEG: X COORDINATE OF FOLLOWING OR PRECEDING POINT IN THE

Last update: 2014/10/10
16:01 programing_guide:structures_in_bief http://wiki.opentelemac.org/doku.php?id=programing_guide:structures_in_bief

http://wiki.opentelemac.org/ Printed on 2020/04/01 16:02

BOUNDARY
 ! IF IT IS IN ANOTHER SUB-DOMAIN.
 TYPE(BIEF_OBJ), POINTER :: XSEG
 !
 ! YSEG: Y COORDINATE OF FOLLOWING OR PRECEDING POINT IN THE
BOUNDARY
 ! IF IT IS IN ANOTHER SUB-DOMAIN.
 TYPE(BIEF_OBJ), POINTER :: YSEG
 !
 ! FAC: MULTIPLICATION FACTOR FOR POINTS IN THE BOUNDARY FOR
 ! DOT PRODUCT.
 TYPE(BIEF_OBJ), POINTER :: FAC
 !
 ! FOR PARALLELISM AND NON BLOCKING COMMUNICATION (SEE PARINI.F)
 !
 ! NUMBER OF NEIGHBOURING PROCESSORS (SEEN BY POINTS)
 INTEGER , POINTER :: NB_NEIGHB
 ! FOR ANY NEIGHBOURING PROCESSOR, NUMBER OF POINTS
 ! SHARED WITH IT
 TYPE(BIEF_OBJ), POINTER :: NB_NEIGHB_PT
 ! RANK OF PROCESSORS WITH WHICH TO COMMUNICATE FOR POINTS
 TYPE(BIEF_OBJ), POINTER :: LIST_SEND
 ! NH_COM(DIM1NHCOM,NB_NEIGHB)
 ! WITH DIM1NHCOM IS THE MAXIMUM NUMBER OF POINTS SHARED
 ! WITH ANOTHER PROCESSOR (OR SLIGHTLY MORE FOR 16 BYTES
ALIGNMENT)

 ! NH_COM(I,J) IS THE GLOBAL NUMBER IN THE SUB-DOMAIN OF I-TH
 ! POINT SHARED WITH J-TH NEIGHBOURING PROCESSOR
 TYPE(BIEF_OBJ), POINTER :: NH_COM
 !
 ! NUMBER OF NEIGHBOURING PROCESSORS (SEEN BY EDGES)
 INTEGER , POINTER :: NB_NEIGHB_SEG
 ! FOR ANY NEIGHBOURING PROCESSOR, NUMBER OF EDGES
 ! SHARED WITH IT
 TYPE(BIEF_OBJ), POINTER :: NB_NEIGHB_PT_SEG
 ! RANK OF PROCESSORS WITH WHICH TO COMMUNICATE FOR EDGES
 TYPE(BIEF_OBJ), POINTER :: LIST_SEND_SEG
 ! LIKE NH_COM BUT FOR EDGES
 TYPE(BIEF_OBJ), POINTER :: NH_COM_SEG
 !
 ! WILL BE USED AS BUFFER BY MPI IN PARALLEL
 !
 TYPE(BIEF_OBJ), POINTER :: BUF_SEND
 TYPE(BIEF_OBJ), POINTER :: BUF_RECVC
 ! FOR FINITE VOLUMES AND KINETIC SCHEMES
 !
 TYPE(BIEF_OBJ), POINTER :: CMI,DPX,DPY
 TYPE(BIEF_OBJ), POINTER :: DTHAUT,AIRST
 !

2020/04/01 16:02 11/16 Focus Manuals: Programing Guide: Structures in BIEF

open TELEMAC-MASCARET - http://wiki.opentelemac.org/

 END TYPE BIEF_MESH
 !

!===
======
 !

SLVCFG

 !

!===
======
 !
 ! STRUCTURE OF SOLVER CONFIGURATION
 !

!===
======
 !
 TYPE SLVCFG
 !
 ! SLV: CHOICE OF SOLVER
 INTEGER SLV
 !
 ! NITMAX: MAXIMUM NUMBER OF ITERATIONS
 INTEGER NITMAX
 !
 ! PRECON: TYPE OF PRECONDITIONING
 INTEGER PRECON
 !
 ! KRYLOV: DIMENSION OF KRYLOV SPACE FOR GMRES SOLVER
 INTEGER KRYLOV
 !
 ! EPS: ACCURACY
 DOUBLE PRECISION EPS
 !
 ! ZERO: FOR CHECKING DIVISIONS BY ZERO
 DOUBLE PRECISION ZERO
 !
 ! OK: IF PRECISION EPS HAS BEEN REACHED
 LOGICAL OK
 !
 ! NIT: NUMBER OF ITERATIONS IF PRECISION REACHED
 INTEGER NIT
 !
 END TYPE SLVCFG
 !

!===

Last update: 2014/10/10
16:01 programing_guide:structures_in_bief http://wiki.opentelemac.org/doku.php?id=programing_guide:structures_in_bief

http://wiki.opentelemac.org/ Printed on 2020/04/01 16:02

======
 !

BIEF_FILE

 !

!===
======
 !
 ! STRUCTURE OF FILE
 !

!===
======
 !
 TYPE BIEF_FILE
 !
 ! LU: LOGICAL UNIT TO OPEN THE FILE
 INTEGER LU
 !
 ! NAME: NAME OF FILE
 CHARACTER(LEN=144) NAME
 !
 ! TELNAME: NAME OF FILE IN TEMPORARY DIRECTORY
 CHARACTER(LEN=6) TELNAME
 !
 ! FMT: FORMAT (SERAFIN, MED, ETC.)
 CHARACTER(LEN=8) FMT
 !
 ! ACTION: READ, WRITE OR READWRITE
 CHARACTER(LEN=9) ACTION
 !
 ! BINASC: ASC FOR ASCII OR BIN FOR BINARY
 CHARACTER(LEN=3) BINASC
 !
 ! TYPE: KIND OF FILE
 CHARACTER(LEN=12) TYPE
 !
 END TYPE BIEF_FILE

 Allocation of structures

Once declared, BIEF_OBJ structures must be defined and memory for their arrays of data must be
dynamically allocated. This is done by specific subroutines, depending of their type, i.e. whether they
are vectors, matrices or blocks. BIEF_MESH structure must also be allocated.

The allocations of structures are grouped in a subroutine called POINT_NAME (NAME is the name of a
TELEMAC module, for example ARTEMIS).

2020/04/01 16:02 13/16 Focus Manuals: Programing Guide: Structures in BIEF

open TELEMAC-MASCARET - http://wiki.opentelemac.org/

The mesh structure must be allocated first. Vectors and matrices will then be allocated with
respect to that mesh.

 Mesh : SUBROUTINE ALMESH

A mesh must be declared previously as a BIEF_MESH structure.

Syntax:

 CALL ALMESH(MESH, NOM, IELM, SPHERI,CFG,NFIC,
 EQUA,NPLAN,NPMAX,NPTFRX,NELMAX,I3,I4)

ALMESH prepares the BIEF_MESH structures and fills some of them, for example it will allocate the
memory for storing the component IKLE and will read it in the geometry file.

However not all the data structure is ready after exiting ALMESH. This task is carried out by the
subroutine INBIEF which must be called later, when all the necessary data have been logged.

Arguments:

MESH : The 'BIEF_MESH' structure to allocate.●

NOM : Fortran name of this structure in 6 characters.●

IELM : Element with the highest number of degrees of freedom in the mesh. 11 : only linear●

interpolation in 2D12 : quasi-bubble in 2D41 : linear in 3D with prisms
SPHERI : Logical. If true, coordinates will be spherical, if not, Cartesian.●

CFG : Configuration. So far 2 integer values: CFG(1) is the storage of matrices (1: classical EBE, 3:●

edge-based)CFG(2) is the matrix-vector product (1: classical EBE, 2: frontal)These data will be used
to build specific data structures relevant to every option.
NFIC : Logical unit where the geometry file has been opened.●

EQUA : Equations to solve or calling programme in 20 characters. Up to now is only used to allocate●

specific arrays for Finite volumes if EQUA=“SAINT-VENANT VF”. is used to optimise memory
requirements.

Next 6 arguments are optional:

NPLAN : Number of horizontal planes in 3D meshes of prisms.●

NPMAX : Maximum number of vertices in the mesh, in case of adaptive meshing (not implemented●

yet).
NPTFRX : Maximum number of boundary points in the mesh, in case of adaptive meshing (not●

implemented yet).
NELMAX : Maximum number of elements in the mesh, in case of adaptive meshing (not implemented●

yet).
I3, I4 : When present, it means that the X and Y coordinates of the mesh are in reality X+I3 and●

Y+I4, I3 and I4 (integers representing a number of metres, have been removed to minimize
truncation errors (see also the SELAFIN format where these two numbers are included for a
geo-referenced post-processing.

 Vector : ALLVEC, ALLVEC_IN_BLOCK

A vector must be declared previously as a BIEF_OBJ structure

Syntax:

Last update: 2014/10/10
16:01 programing_guide:structures_in_bief http://wiki.opentelemac.org/doku.php?id=programing_guide:structures_in_bief

http://wiki.opentelemac.org/ Printed on 2020/04/01 16:02

 CALL ALLVEC(NAT,VEC,NOM,IELM,DIM2,STATUT)

Arguments:

NAT : Nature (1=real, 2=integer).●

VEC : The BIEF_OBJ structure to be allocated as a vector.●

NOM : Fortran name of vector in 6 characters.●

IELM : Vector discretisation type (or dimension depending on the status, see below) 0 : dimension 1,●

constant per element.1 : dimension 1 linear discretisation.10 : triangles, constant discretisation per
element.11 : triangles, linear discretisation.12 : triangles, quasi-bubble discretisation.40 : prism,
constant discretisation per element.41 : prism, linear discretisation.

DIM2 : Second dimension of vector.❍

STATUT❍

0: Any array. ELM is then its first dimension.1 : Vector defined on a mesh, with no possibility of●

changing discretisation.2 : Vector defined on a mesh, with possibility of changing discretisation
within the limits of the memory space.

Syntax:

 CALL ALLVEC_IN_BLOCK(BLO,N,NAT,NOM,IELM,DIM2,STATUT)

With ALLVEC_IN_BLOCK, N vectors with the same characteristics are put directly into the block BLO.
NOM is then only a generic name, for example if NOM is T, the names of the vectors will be T1, T2, etc.
Only the block BLO must be declared. T2 will be in fact BLO%ADR(2)%P but can be named also T2 if
T2 is declared as a BIEF_OBJ pointer and pointed to BLO%ADR(2)%P:

 TYPE(BIEF_OBJ), POINTER :: T2
 T2 => BLO%ADR(2)%P

 Matrix: ALLMAT

A matrix must be declared previously as a BIEF_OBJ structure. We only deal with matrices of double
precision numbers.

Syntax:

 CALL ALLMAT(MAT,NOM,IELM1,IELM2,CFG,TYPDIA,TYPEXT)

Arguments:

MAT : The BIEF_OBJ structure to be allocated as a vector.●

NOM : Fortran name of matrix in 6 characters.●

IELM1 : Type of discretisation for rows (same convention as for the vectors).●

IELM2 : Type of discretisation for columns.●

CFG : Configuration. So far 2 integer values: CFG(1) is the storage of matrices (1: EBE, 3: edge●

based)CFG(2) is the matrix-vector product (1: EBE, 2: frontal)
TYPDIA : Diagonal type ('0' : zero, 'Q' : any, 'I' : identity)●

TYPEXT : Type of the off-diagonal terms ('0': zero, 'Q': any, 'S': symmetrical)●

 Block : ALLBLO

2020/04/01 16:02 15/16 Focus Manuals: Programing Guide: Structures in BIEF

open TELEMAC-MASCARET - http://wiki.opentelemac.org/

A block must be declared previously as a BIEF_OBJ structure.

Syntax:

 CALL ALLBLO(BLO,NOM)

Arguments:

BLO : The BIEF_OBJ structure to be allocated as a block.●

NOM: Fortran name of block in 6 characters.●

In this case, we have an empty shell where we do not specify which objects have been placed in the
block. A block structure can thus be used again. To fill the block, the subroutine ADDBLO must then be
called (see paragraph A.I.4.4). The syntax will be:

 CALL ADDBLO(BLOCK,OBJ)

to add a BIEF_OBJ structure to the block called BLOCK. A block can be emptied by the simple line:

 BLOCK%N = 0

because the component N is the number of objects in the block.

 Example

We take here the example of a double precision array called SAMPLE, with one dimension, and
quasi-bubble discretisation. This vector will be then set to a constant value.

1) Declare the structure:

 TYPE(BIEF_OBJ) :: SAMPLE

in a global declaration through a module, or locally.

2) Allocate the structure:

 CALL ALLVEC(1,SAMPLE,'SAMPLE',12,1,STATUT)

3) To set the value of the vector to 5.D0 for all points of the mesh, you can then do:

 CALL OS('X=C ',X=SAMPLE,C=5.D0)

which is equivalent in this case to (but the following would require declaration of integer 'I'):

 DO I=1,SAMPLE%DIM1
 SAMPLE%R(I)=5.D0
 ENDDO

To understand this loop, remember that R is the component storing the real data of vectors, and DIM1
the size of the first dimension. However it is not mandatory to remember this if you use the functions
and subroutines designed for operations on structures.

Last update: 2014/10/10
16:01 programing_guide:structures_in_bief http://wiki.opentelemac.org/doku.php?id=programing_guide:structures_in_bief

http://wiki.opentelemac.org/ Printed on 2020/04/01 16:02

From:
http://wiki.opentelemac.org/ - open TELEMAC-MASCARET

Permanent link:
http://wiki.opentelemac.org/doku.php?id=programing_guide:structures_in_bief

Last update: 2014/10/10 16:01

http://wiki.opentelemac.org/
http://wiki.opentelemac.org/doku.php?id=programing_guide:structures_in_bief

	Focus Manuals: Programing Guide: Structures in BIEF
	A short description
	VECTOR
	MATRIX
	BLOCK
	BIEF_MESH structure
	SLVCFG
	Reference description of the structures
	Allocation of structures
	Mesh : SUBROUTINE ALMESH
	Vector : ALLVEC, ALLVEC_IN_BLOCK
	Matrix: ALLMAT
	Block : ALLBLO
	Example

